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Lignin is a major component of lignocellulosic biomass and as such, it is processed in enormous amounts in the
pulp and paper industry worldwide. In such industry it mainly serves the purpose of a fuel to provide process
steam and electricity, and to a minor extent to provide low grade heat for external purposes. Also from other
biorefinery concepts, including 2nd generation ethanol, increasing amounts of lignin will be generated. Other
uses for lignin – apart from fuel production – are of increasing interest not least in these new biorefinery con-
cepts. These new uses can broadly be divided into application of the polymer as such, native or modified, or
the use of lignin as a feedstock for the production of chemicals. The present review focuses on the latter and in
particular the advances in the biological routes for chemicals production from lignin. Such a biological route
will likely involve an initial depolymerization, which is followed by biological conversion of the obtained smaller
lignin fragments. The conversion can be either a short catalytic conversion into desired chemicals, or a longer
metabolic conversion. In this review, we give a brief summary of sources of lignin, methods of depolymerization,
biological pathways for conversion of the lignin monomers and the analytical tools necessary for characterizing
and evaluating key lignin attributes.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Lignin — An introduction

1.1. Lignin in nature

Lignin is one of themain constituents of terrestrial plant biomass to-
getherwith the carbohydrate polymers cellulose and hemicellulose. It is
stated to be the second most abundant naturally occurring polymer on
the planet, and it is by far the most important renewable source of aro-
matic compounds (Bozell et al., 2007). The amount of lignin formed an-
nually in nature has been estimated to be in the range 5 to 36× 108 tons
(Gellerstedt andHenriksson, 2008). The lignin polymer is not found iso-
lated in nature, but is strongly physically associated with hemicellulose
and cellulose. The exact linkage structures in native biomass are not
fully known. In technical processing of biomass, such as pulping, link-
ages are, however, formed between the lignin and carbohydrates giving
rise to a lignin carbohydrate complex (LCC) (Lawoko et al., 2005). The
fraction of lignin varies widely between different types of biomass.
The highest lignin fraction is typically found in softwood with a range
of 25–32 wt% of dry matter, whereas the lignin content in hardwoods
is slightly lower (18–25%) (Mutturi et al., 2014). The lignin content is
even lower for straw and grasses, and lignin is almost completely miss-
ing in mosses and green algae (Vanholme et al., 2010). From an evolu-
tionary perspective, the incorporation of lignin into the plant structure
enabled development of the tracheid cell type, and thereby a better
transportation of water in the plant (Gellerstedt and Henriksson,
2008). This in turn made expansion of plants into dryer land possible.
Lignin also has an important function as a protectant of the polysaccha-
rides, since it is difficult to degrade.

Out of the threemain polymers in plant, lignin has themost complex
and heterogeneous composition and structure. The tridimensional poly-
mer is built up from phenyl propanoid units which are substituted at
various positions, linked by ether and C\\C bonds. There are three
basic building block structures abbreviated H (p-hydroxyphenyl), G
(guaiacyl) and S (syringyl), differing in the number of methoxy groups
on the aromatic ring; 0, 1 or 2, respectively. These structures can be rep-
resented in their alcohol form; namely as p-coumaryl, coniferyl, and
sinapyl alcohols (Fig. 1). The primary lignin building blocks originate
from the shikimate pathway (Higuchi, 1990). The initial step is the for-
mation of cinnamic acid from phenylalanine, through the action of the
enzyme phenylalanine lyase (PAL). Cinnamic acid is then further con-
verted in a multistep process to the three basic structures. The polymer,
in turn, is formed by radical coupling of the basic building blocks in a
process involving enzymatically catalyzed oxidation. The initial step of
this process is an oxidation of the phenol group of the monolignols,
which gives rise to reactive radicals (Ralph et al., 2004). Since the
monolignols are conjugated systems, mesomeric effects will give sever-
al ways of linking the building blocks together, gradually forming a lig-
nin polymer. The relative proportions of the building blocks vary

depending on the type of biomass. For instance, the coniferyl part
(G) is completely dominant in softwoods (90–95%), whereas the pro-
portion of sinapyl (S) (45–75%) is larger than the coniferyl part (25–
50%) in hardwoods (Gellerstedt and Henriksson, 2008). Lignin in
grasses contains significant amount of coumaryl (H) (5–35%), which is
low in both softwoods and hardwoods. Lignin degradation in nature is
slower than degradation of the carbohydrates, and lignin consequently
constitutes a large part of the humic acid – the organic part of soil.

1.2. Technical lignin

Huge amounts of lignin are produced yearly in the pulp and paper
industry as a co-product in the cooking process. Lignin is insoluble in
water in its native state, and the purpose of the cooking process is to sol-
ubilize lignin and thereby separate it from the fiber fraction. The yearly
amount of lignin produced in this manner can be estimated to be
around 130 million tons (Rinaldi et al., 2016), most of which is directly
used on-site. The Kraft cooking method is today by far the most com-
mon pulping method followed by sulfite-cooking (Sjöstrom, 1993). In
particular for non-woodybiomass, alkaline cookingwith anthraquinone
added, that ismore selective towards lignin removal, is used to someex-
tent (Hedjazi et al., 2009), and lignin may furthermore be removed
using organic solvents, e.g. ethanol or methanol. A few different
organosolv process concepts have been developed but these are of lim-
ited commercial significance for pulping at present (Viell et al., 2013),
and the economic viability of the process needs to be clearly proven at
pilot and demo scale (Michels and Wagemann, 2010).

The structure of the technical lignin is different from the native lig-
nin and is furthermore dependent on the cooking method applied
(Constant et al., 2016). As a result of the method used to obtain lignin,
the abundances of different C\\O and C\\C linkages present in lignin
will be substantially different from those existing for the native lignin
(Abdelaziz and Hulteberg, 2016). This in turn affects the choices for fur-
ther depolymerization. In the Kraft process, wood (normally softwood)
is treated with an aqueous solution of NaOH and Na2S (white liquor) at
a temperature range of 155–175 °C for several hours, giving OH– and
HS− ions as active reactants. Aromatic ether bonds in the lignin struc-
ture are broken by the hydroxide and hydrosulfide anions resulting in
smaller water/alkali-soluble lignin fragments. These fragments, having
a lower molecular mass, diffuse more rapidly into the cooking liquor –
the black liquor. The mode of lignin removal is different in the sulfite-
cooking process, which can take place under acidic, neutral, or even al-
kaline cooking conditions. Ether bonds are hydrolytically cleaved, after
which sulfonations by the sulfite ions occur. The resulting lignosulfo-
nates are highly water-soluble and dissolve in the cooking liquid
(Adler, 1977). The sulfite process dominated the industry in the begin-
ning of the 20th century, but has gradually been out-phased by the Kraft
process, which gives stronger fibers and a more efficient recovery of
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chemicals. The soda-anthraquinone (soda-AQ) process is based on soda
(NaOH) and AQ, which catalyzes lignin depolymerization and retards
the rate of alkaline peeling of carbohydrates. The soda has the same
function as in the Kraft process, and AQ hence adds additional ether-
bond breaking capability (Chung and Washburn, 2016).

The Alcelltm and Organocelltm processes are examples of organosolv
processes, in which the removal of lignin takes place with an organic
solvent. The former process uses an ethanol/water mixture with
50 wt% of each, and wood chips are cooked three times at 200 °C and
3.5MPa. The same cooking conditions are used in the Organocelltm pro-
cess, but here a methanol/water mixture is used instead of the ethanol/
water mixture. Furthermore, the product from the methanol/water
cooking is recooked in 20% NaOH (Hergert, 1998).

Some of the basic characteristics of lignins obtained from the
methods above are summarized in Table 1. The first two processes are
large industrial processes, and large quantities of these lignins (i.e.
Kraft lignin and lignosulfonates) are therefore potentially available. A
drawback is that the lignins contain sulfur in both cases, and in addition
some hemicellulose. The Kraft lignin has low water solubility, is high in
phenolic contents and has a varying quality (Sjöstrom, 1993). The ligno-
sulfonates, on the other hand are polar and soluble in water, and their
phenolic content is low. The molecular mass of lignosulfonates are
higher than those of Kraft lignin, largely due to the incorporation of sul-
fonate groups (Saake and Lehnen, 2007). The soda-AQ lignin has a rela-
tively high availability, is low in price, and has high aliphatic and
aromatic functionality (Calvo-Flores et al., 2015). A significant advan-
tage is that it is sulfur free. It is partially soluble in organic solvents,
but contains hemicellulose. Its properties tend to vary somewhat, and
since annual crops are themost common feedstocks, the resulting lignin
will be rich in silicate. In many ways, the most attractive lignin is pro-
duced using organosolv processes (e.g. Alcelltm and Organocelltm)
(Abdelaziz et al., 2015; Nadif et al., 2002). These processes give lignins,
which are free of sulfur and hemicellulose, have an even quality, and are
soluble in organic solvents. However, industrial implementation of
organosolv processes is currently very marginal, which means that the
availability of these lignins is low and prices are high.

1.3. Lignin uses

Lignin has several different applications today (Table 2) and the
market is slowly growing. However, the completely dominating use
today is as fuel and only a few percent of the lignin produced in the in-
dustry is isolated for other purposes. The huge amounts of Kraft lignin
produced yearly are used on-site for steam and electricity generation.
When pulp is the primary product, the energy content in the plant
will be higher than needed and surplus heat and electricity can there-
fore be used externally. However, this heat is instead needed for drying
of pulp to paper if the plant is an integrated pulp and paper mill.
Methods have been developed to gasify black liquor lignin into syngas,
which can in turn be catalytically converted to e.g. methanol (Naqvi
et al., 2012), but these have so far not reached commercial scale imple-
mentation. Lignosulfonates produced from the sulfite process is the
dominating source of lignin for other applications than fuel, with a pro-
duction of about 1 million tons per year (Strassberger et al., 2014). Lig-
nosulfonates have an established market as additives in concrete, but
are also used as binders, adhesive, or dispersants – in e.g. the
agroindustry. In terms of production of chemical compounds, vanillin
is a notable niche product. It is produced from softwood lignin, which
is rich in guaiacyl units, in an oxidative alkaline chemical process
(Pacek et al., 2013).

An extensive analysis on future potential lignin uses was made by
researchers from the National Renewable Energy Laboratory (NREL)
and the Pacific Northwest Laboratory (PNNL) resulting in the second
volume of “Top-value added chemicals from biomass” (Bozell et al.,
2007), where the first volume was the landmark study dealing with
the carbohydrates (Werpy et al., 2004). In the lignin report, the produc-
tion of a number of chemicals: fuels, macromolecules, syngas, hydrocar-
bons, phenols, and oxidized products are discussed. A central conclusion
of the analysis of hurdles for production of smaller molecules, is the
need for further development of technology to selectively break and
make bonds, as well as better analysis and separation technology.
These are topics to be discussed in this review, with a focus on lignin
valorization using biological conversion, as outlined in Fig. 2.

Table 1
Comparison between lignin from different cooking processes (Calvo-Flores et al., 2015; Saake and Lehnen, 2007; Sjöstrom, 1993).

Process Availability Price Aliphatic/phenolic groups Quality Solubility in organic solvents Sulfur content Hemicellulose content

Kraft High Low High Varying Insoluble About 1 wt% (thiol groups) High
Sulfite High Low Low Varying Insoluble 5–6 wt% (sulfonate groups) Some
Soda-Anthraquinone High Low High Varying Partial None Some
Alcell™ Low High Etherified Constant High None None
Organocell™ Low High Etherified Constant High None None
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α

β

γ

1

2

3

4

5

6

OH

O O

CH3H3C

OH

α

β

γ

1

2

3

4

5

6

OH

O

CH3

OH

α

β

γ

1

2

3

4

5

6

OH

OH

Fig. 1. The three primary monomeric building blocks of lignin (monolignols), showing also numbering of carbon atoms in the benzene ring and notation on the propylene side chain.
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2. Depolymerization

A central process in the proposed strategy for lignin valorization
(Fig. 2) is the breakdown of the lignin feedstock into compounds
which can be further bioconverted by microorganisms. The depolymer-
izationwill need to yield lowmolecularweight lignins (mono- and olig-
omers), as only compounds of this size can serve as substrates for
further cellular assimilation (see Section 3). Thorough methods for
chemical analysis of the depolymerized lignin (see Section 4) will also
be essential for a successful integration of the depolymerization and
biocatalysis steps.

2.1. Bond breaking

The initial step allowing production of smallermolecules from lignin
is depolymerization - a topic reviewed by e.g. (Amen-Chen et al., 2001;
Brebu and Vasile, 2010; Huber et al., 2006; Ragauskas et al., 2014; Xu
et al., 2014; Zakzeski et al., 2010). To obtain depolymerization of the lig-
nin molecule, it is necessary to break the linkages between the phenyl
propane units. The β-O-4 aryl glycerol ether bond is the dominant link-
age type in native lignin. Typically, it constitutes N50% of the bonding
structures of a native lignin macromolecule in both softwood and hard-
wood lignins. Other major linkages comprise 5-5, β-5, α-O-4, β-β, β-1,
4-O-5, and dibenzodioxocin (Fig. 3). The functional groups in lignin,
mainly methoxy and phenolic hydroxyl groups, have a significant effect
on themolecule reactivity. Table 3 lists the different types of linkages as
well as the functional groups common within a lignin macromolecule
and their approximate proportions.

A classification of depolymerization methods is included in Fig. 2. In
the following section, pyrolysis of lignin will be considered first, follow-
ed by catalytic cracking and hydrocracking. Thereafter the attention is
turned to hydrogenolysis, with different types of catalysts, and hydrolysis
of lignin – using subcritical or supercritical conditions. Finally, enzymatic
depolymerization will be described.

2.2. Pyrolysis

Pyrolysis, the thermal degradation of an organic material at elevated
temperature in inert environment, is a net endothermic reaction (He
et al., 2006). There has been a strong interest in the pyrolysis of lignin,
both for analytical purposes and for the production of fine chemicals

and fuels. Lignin is a thermoplasticmaterial and is rather recalcitrant to-
wards thermal depolymerization (deWild et al., 2012). Numerous stud-
ies have been performed for determining the temperature range and
developing kinetic models for the decomposition of lignin (Cho et al.,
2012; Montané et al., 2005; Sharma et al., 2004) and lignin model com-
pounds (Chu et al., 2013). Kraft lignin, in particular, has been investigat-
ed within the field (Caballero et al., 1996; Fierro et al., 2005). Due to the
natural variations in the lignin structure, the degradation of the various
types is quite different. Ferdous et al. investigated the pyrolysis of Alcell
and Kraft lignins in a fixed bed reactor and in a thermogravimetric ana-
lyzer using helium and nitrogen as carrier gas (Ferdous et al., 2002). The
gaseous products obtained mainly consisted of H2, CO, CO2, CH4, and
minor amounts of compounds with two or more carbon atoms (C2H4,
C2H6, C3H6, C3H8, and traces of C4 compounds). Higher heating rates
led to higher lignin conversion and larger syngas production for both
Alcell and Kraft lignins. The kinetic parameters were highly dependent
on the lignin substrate type, the lignin origin, and the equipment type
adopted for pyrolysis reactions. In another example, Patwardhan et al.
studied the pyrolysis of corn stover lignin using a micro-pyrolyzer
coupled with a GC–MS/FID (Patwardhan et al., 2011). The pyrolysis re-
sulted mainly in the formation of monomeric phenolic compounds, but
the condensation of these vapors led further to other dimeric and olig-
omeric products. For example phenol, 4-vinyl phenol, 2-methoxy-4-
vinyl phenol, and 2,6-dimethoxy phenol were reported as products.
Zhang and coworkers employed Py-GC/MS and TGA/FTIR techniques
in the non-catalytic/catalytic fast pyrolysis of several different types of
lignin (Zhang et al., 2014b; Zhang et al., 2012). Approximately ten com-
pounds were identified to account for almost 50% of the volatile prod-
ucts. Of the tested lignins, the Kraft lignin generated the least
desirable pyrolysis products. The yields of volatiles were low, large
amounts of char and in addition sulfur containing compounds were
formed. In contrast, prairie cordgrass lignin potentially produced high
quality of bio-oil and aspen lignin similarly gave high yields of bio-oil.

Toluene and p-Xylene were the most abundant hydrocarbons pro-
duced when micro-porous zeolite catalysts were used in the reaction.
Catalytic fast pyrolysis of lignin is a promising approach where zeolite
catalysts play a vital role in deoxygenating lignin-derived oxygenates
(Yu et al., 2012).

Other recent reports on catalytic microwave-assisted pyrolysis over
activated carbon state total phenolics yields of approximately 78% and
hydrocarbon yields of 15% (Bu et al., 2014). The origin of phenolic olig-
omers during fast pyrolysiswas investigated by Bai et al., and itwas con-
cluded that a significant fraction of phenolic oligomers available in bio-
oil originates from repolymerization of smaller phenolic compounds
formedduring the pyrolytic depolymerization of lignin (Bai et al., 2014).

In conclusion, pyrolysis may provide a route to obtain monomeric/
oligomeric phenolic compounds, but further work on understanding
the kinetics to enable process design to maximize yields of desired
chemical compounds is needed. Clearly, the lignin origin plays a key
role in the resultant pyrolysis products obtained.

2.3. Cracking

Cracking of hydrocarbons is a common unit operation in petroleum
refineries, and contributes with somewhere between 20% and 50% of all
gasoline produced. The cracking can be performed with hydrogen (hy-
drocracking) or without hydrogen. Cracking of lignin is differentiated
in this context from pyrolysis of lignin by the presence of a heteroge-
neous catalyst. Corma and Huber discussed the catalytic cracking of lig-
nin and stated that the conversion of this fuel is particularly challenging,
as it contains stable aromatic structures (Huber and Corma, 2007). In-
deed phenols, with similar structure as lignin produce large amounts
of coke on the catalysts. Catalytic cracking with zeolite catalysts has
been tested for lignin upgrading (Adjaye and Bakhshi, 1995). For exam-
ple, Thring et al. performed cracking of lignin using the zeolite catalyst
HZSM-5 (Thring et al., 2000), and obtained both liquid and light

Table 2
Examples of lignin use.

Principal use Comments References

Fuel Fuel in recovery boiler in Kraft
processes

Naqvi et al. (2012)

Combined heat and power applications
of lignin from 2nd generation ethanol.
Could be a growing source of lignin in
particular in US and Brazil

Hamelinck et al. (2005);
Bugg and Rahmanpour
(2015)

Concrete
additive

Lignosulfonates have a plasticizing
effect, and are used to give an increased
pourability of concrete. Typical dosages
are 0.1–0.3% by weight of cement.

Plank (2004)

Dispersant For powder preparation in e.g.
agriculture

Animal feed
additive

Lignosulfonates can be used in the
production of feed pellets/blocks

Doherty et al. (2011)

Resins and
adhesives

Lignin can be used to partly replace
phenols in various types of adhesives
and resins

Stewart (2008)

Vanillin
production

Vanillin can be obtained through
chemical processing of softwood lignin
from sulfite pulping

Pacek et al. (2013)

Syngas Gasification of lignin recovered from
Kraft processing can give synthesis gas.
This process has not gained commercial
success yet.

Naqvi et al. (2012)
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hydrocarbon gases directly in a fixed bed reactor in the temperature
range 500–650 °C. The attained conversion valueswere high and ranged
between 50% and 85%. More recently, Prado et al. suggested lignin as a
good candidate for photocatalytic cracking because of the presence of
hydroxyl groups (Prado et al., 2013a). In their study, the photocatalytic
cracking reaction involved titanium oxide as a heterogeneous catalyst.
High yields of lignin degradation compounds were obtained, with the
main products syringaldehyde, pyrocatechol, and raspberry ketone.
Furthermore, a two-step process incorporating depolymerization and
catalytic cracking without the addition of hydrogen was conducted by
Yoshikawa et al. in order to produce phenolic compounds from lignin
over an iron oxide catalyst (Yoshikawa et al., 2014). It was concluded
that the methoxyphenols and catechol in the lignin-derived slurry
were selectively converted to phenols, cresols, and other alkyl phenols.

Themajor work in the field of hydrocracking of lignin has been done
with the purpose of producing gasoline. To this end, the US NREL has

developed and patented a process for converting lignin to motor fuel
(Miller et al., 1999; Montague, 2003; Shabtai et al., 1999). The process
includes a base-catalyzed lignin depolymerization using NaOH and
methanol or ethanol as solvent at 593 K and 12MPa. The liquid product
is separated from the solids and neutralized (using H2SO4), after which
the lignin is extracted using toluene. The toluene is further separated
from the lignin and is hydrotreated in a two-reactor system, in which
the first is a hydrodeoxygenation reaction (see Section 2.4) and the sec-
ond is a hydrocracker.

2.4. Hydrogenolysis

Hydrogenolysis in general means decomposition in the presence of
hydrogen, and in the specific context here it means a (reductive) depo-
lymerization of the ligninmolecule into smaller fragments, oligomers or
monomers. Such hydrogenolysis of lignin is performed at severe
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conditions, i.e. high temperatures and pressures. The cleavage of func-
tional groups may cause complete rearrangement of the carbon back-
bone leading to formation of 30–50 wt% char and release of volatile
products (Brebu and Vasile, 2010). However, the presence of hydrogen
can terminate the formed radicals in the carbon framework, suppress
the char formation andpromote thedepolymerization into smaller frag-
ments and monomers.

The most investigated class of heterogeneous catalysts for lignin
hydrogenolysis is the hydrodeoxygenation catalysts, both for actual lig-
nin (Harris et al., 1938; Meier et al., 1994; Oasmaa et al., 1993; Shabtai
et al., 1999; Yan et al., 2008) and lignin model-compounds
(Bredenberg et al., 1982; Bunch and Ozkan, 2002; De la Puente et al.,
1999; Ferrari et al., 2002; Laurent and Delmon, 1994; Pepper and
Supathna, 1978; Şenol et al., 2007; Viljava et al., 2000; Yang et al.,
2009; Zhao et al., 2009). These are usually a combination of Co, Mo, Pt,
Ni, and W, which may be used on a support material (see e.g.
Furimsky (2000)). Out of these, Co\\Mo appears to be superior (Singh
and Ekhe, 2015; Zakzeski et al., 2010) for producingmonomeric phenols
from the lignin.

Xu et al. investigated the depolymerization and hydro-
deoxygenation of switch grass lignin using a formic acid hydrogen
source, 20 wt% Pt/C catalyst, and ethanol solvent (Xu et al., 2012a). At
a temperature of 350 °C, this combination yielded phenolic monomers
and improved the O/C and H/C molar ratios. Furthermore, Cu-doped
hydrotalcite-like precursor emerged to play a significant role in mini-
mizing char formation and favoring the required hydrogenolysis, dehy-
dration, and hydrogenation stages without reducing the aromatic rings,
attaining catechols as major products from the complex lignin biopoly-
mer (Barta et al., 2014). Jongerius et al. also proposed a two-step ap-
proach to the conversion of lignin to monoaromatic compounds of
low oxygen content (Jongerius et al., 2013). The first step entails lignin
depolymerization in a liquid phase reforming reaction using 1wt% Pt/γ-
Al2O3 catalyst at 225 °C in alkaline ethanol–water resulting in a decrease
in lignin molecular weight. The lignin-oil isolated by extraction of the
ethanol–water solution is further subjected to a hydrodeoxygenation
reaction in the second conversion step, which is typically performed
in dodecane at 300 °C under 5MPa hydrogen pressure over CoMo/Al2O3

and carbon nanofiber-supported molybdenum carbide (Mo2C/CNF)
catalysts.

In an excellent contribution towards developing effective methods
for lignin valorization, Song et al. revealed that nickel-based catalysts
are highly active and selective in native lignin conversion towards pro-
ducing variousmonomeric phenols (Song et al., 2013). Results indicated
that lignin can be selectively cleaved into propylguaiacol and
propylsyringol with total selectivity N90% at a lignin conversion of
about 50%. This work contributes in understanding the behavior of the

native lignin conversion and the monomeric phenolics formation
through reductive depolymerization. In another example, Wang and
Rinaldi demonstrated a novel route for the conversion of lignin to
arenes (Wang and Rinaldi, 2013). The one-pot procedure was conduct-
ed in the presence of Raney Ni and β-zeolite using 2-propanol as H-
donor in a molar ratio of 2-propanol to phenol ranging between 1 and
3. This lignin conversion, giving low boiling point arenes rather than
high boiling phenols, facilitates lignin valorization by conventional pe-
troleum refineries.

The efforts made on homogeneous catalysis in the hydrogenolysis of
lignin are relatively small compared to the extensive research efforts on
heterogeneous catalysis. The first studies with water soluble metal salts
in biomass liquefaction was reported in 1931 by Lindblad (Lindblad,
1931), who used Ni, Co and Fe salts for the hydrotreatment of sawdust.
Later salts of Ni and Mo have been reported as effective catalysts
(Rogers et al., 1981). Oasmaa and Johansson managed to deoxygenate
Kraft lignin to the degree of 98% by using a water soluble salt of Mo at
20 MPa (Oasmaa and Johansson, 1993). The most common approach
appears to be the use of Rh-based complex with various organic anions
such as 1,5-C6H10, triphenylphosphine (PPh3), and C6H6 (Hu et al.,
1997; Plasseraud and Süss-Fink, 1997; Suarez et al., 2006) or colloidal
rhodium (Nasar et al., 1994; Zhao et al., 2007). An inorganic salt was,
however, reported by Nagy et al. (Nagy et al., 2009). In most cases, the
partial pressure of hydrogen has been relatively low (0.1–5 MPa), but
there are exceptionswithpressures of almost 10MPa. The temperatures
applied are low compared to the heterogeneous catalysis experiments,
ranging from room temperature to 378 K.

During hydrogenolysis with gaseous hydrogen, depolymerization
and char formation depends on the hydrogen partial pressure (Pandey
and Kim, 2011). High partial pressure of hydrogen suppresses char for-
mation and promotes depolymerization. During thermolysis of peat,
large volumeof gas (mainly CO2) is evolvedwhich dilutes the added hy-
drogen and increases the total pressure. This also probably applies to
lignin, since a large gas volume is released during heating. It should be
mentioned that some of the hydrogen donor solutions are operating at
super-critical conditions, but are sorted under this section due to the hy-
drogen donating nature of the reaction.

2.5. Hydrolysis

The hydrolysis reactions of lignin with water, often in the presence
of a catalyst, have been investigated by several researchers. This reac-
tionmay be performed using sub- or super-critical water, where the lat-
ter will be dealt with in a later section.

Karagöz et al. used the carbonate salt of Rb and Cs for producingphe-
nol by hydro-liquefaction of wood biomass (Karagöz et al., 2004). In a
treatment at 553 K for 15min, in which these salts were added at a con-
centration of 1 M, mainly phenolic and benzenediol derivatives were
obtained. In the thermal process without the catalysts, the product dis-
tribution markedly changed, giving as main products 4-methyl-phenol,
2-furan carboxaldehyde and 2-methoxy-phenol. The two first products
where not at all produced with the catalysts present.

Among the routes available for lignin conversion, the hydrolysis is
considered to be relatively mild, and the base-catalyzed depolymeriza-
tion of lignin using NaOH and other basicmedia have shown to be an ef-
ficient depolymerization approach. A critical issue is to minimize the
formation of char and avoid lignin repolymerization, and capping agents
can be used for suchpurposes. Capping agents also enhance the yields of
lowmolecular weight liquid products by stabilizing the present pheno-
lic compounds. Phenol was used as a capping agent by Yuan et al. in a
study where high molecular weight alkaline lignin was hydrolyzed
into small oligomers in a pressurized hot water/-ethanol mixture with
NaOH as catalyst in the temperature range of 220–300 °C. At a reaction
temperature of 260 °C, and lignin/phenol ratio of 1:1 (w/w) an almost
complete depolymerization with b1% solid residue and only traces of
gas products were obtained for a reaction time of 1 h (Yuan et al.,

Table 3
Common linkages and functional groups in lignin and their approximate proportions
(Capanema et al., 2005; Chakar and Ragauskas, 2004; Sjöstrom, 1993; Zakzeski et al.,
2010).

Linkage type Share in softwood
lignin (%)

Share in hardwood
lignin (%)

β-O-4 45–50 60
5-5 10–27 3–9
β-5 9–12 6
α-O-4 2–8 7
β-β 2–6 3–12
β-1 7–10 1–7
4-O-5 4–8 7–9
Dibenzodioxocin 5–7 1–2

Functional group abundance per 100 C9-units

Aliphatic hydroxyl 115–120 88–166
Methoxyl 90–97 139–158
Phenolic hydroxyl 15–30 10–15
Carbonyl 10–20 17–24
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2010). Boric acid has also been shown to suppress addition and conden-
sation reactions of initial products generated (Roberts et al., 2011).With
a combination of base-catalyzed lignin hydrolysis and boric acid, a yield
of low molecular weight products above 85% was obtained.

In a recent contribution, the depolymerization of Kraft lignin into
polyols of moderately high hydroxyl number was successfully obtained
by Mahmood et al. without using any organic solvent or capping agent
but only direct hydrolysis using NaOH as a catalyst (Mahmood et al.,
2013). The optimum operating conditions was found to be a tempera-
ture of 250 °C, a holding time of 1 h, and a NaOH/lignin mass ratio of
0.28 with 20 wt% substrate concentration. This resulted in b0.5% solid
residues and 92% yield of depolymerized lignins suitable for bio-
polyols production. Base-catalyzed depolymerization has been extend-
ed to lignin-rich residues after pretreatment and enzymatic hydrolysis,
and significant yields of lowmolecular weight aromatics were obtained
(Katahira et al., 2016).

2.6. Super-critical fluids

Super-critical water has several properties making it suitable as a
solvent for lignin valorization. First of all, it is completely miscible
with light gases, hydrocarbons, and aromatic compounds (Kanetake
et al., 2007). Secondly, it has low viscosity, high diffusivity, and a dielec-
tric constant similar to several organic solvents, with the added benefit
of being thermally stable (Furusawa et al., 2007). Another advantage
with the solvent is that separating the organic fractions from it is rela-
tively simple. However, the high pressure and temperature required
(above 647 K and 22 MPa) (Mörtstedt and Hellsten, 1999) are major
drawbacks to the technology. This also makes it difficult to operate in
a continuous mode, as feeding lignin during extraction is very difficult.
Additionally, it is unclear whether it is possible to recuperate any of
the energy needed in the creation of the super-critical water and if the
materials issues can be solved.

A problem in supercritical liquid treatment is char formation, which
has been observedwhen decomposing lignin in super-critical water and
methanol (Yokoyama et al., 1998). Yokoyama et al. also established that
the yield of char decreases and the yield of oil increases when the pres-
sure is increased at constant temperature. Gosselink et al.
depolymerized hardwood andwheat straworganosolv lignins in a com-
pressed fluid of carbon dioxide/acetone/water at 300 °C and 100 bar
into 10–12% aromatic monomers through adding small amounts of
formic acid as hydrogen donor (Gosselink et al., 2012). However, a sub-
stantial amount of charwas still formed indicating that further improve-
ments are required in order to minimize losses as char. Recently, a one-
step conversion of soda ligninwas achieved in supercritical ethanol over
CuMgAlOx catalyst resulting in high monomer yield (23 wt%) without
the formation of char (Huang et al., 2014). Aromatics were the major
products obtained. In addition, supercritical ethanol was found to be
significantly more effective in producing monomers and avoiding char
than supercritical methanol. The same research group further demon-
strated the effectiveness of ethanol as a capping agent and formalde-
hyde as a scavenger, efficiently suppressing both depolymerization
and char-formation reactions resulting in high-yield production of mo-
nomeric aromatics from lignin (Huang et al., 2015). Similarly,
Güvenatam et al. used metal acetates, metal chlorides and metal
trifluoromethanesulfonates as Lewis acid catalysts for the depolymeri-
zation of soda lignin at 400 °C in supercritical ethanol and water
(Güvenatam et al., 2016). Char formation was also inhibited and high
yields of lowmolecularweight organic products were produced. Catallo
and Junk patented a process for converting wide ranges of biomass, in-
cluding lignin, to hydrocarbon mixtures in near-critical or supercritical
water(Catallo and Junk, 2001). The objectivewas to produce usefulmix-
tures that are similar to a sweet crude petroleum, together with volatile
alkane and alkene gases (C2 to C5). It was claimed that such reactions
may be carried out in continuous, batch, or semi-batch modes. Howev-
er, only batch and stop-flow reactors were employed in the study. In

another patent, Barta et al. developed a method using supercritical
methanol. Lignin was extracted from biomass and subsequently
depolymerized into mixtures of monomers using a porous metal oxide
catalyst in thepresence of the supercriticalmethanol (Barta et al., 2016).

2.7. Enzymatic depolymerization

A different option for lignin depolymerization is through enzyme ca-
talysis, which is the main initial process in lignin degradation in nature.
The lignin polymer is heterogeneous with many different bond types
between the constituent ligno-monomers (cf. Fig. 3). As opposed to
the targeted depolymerization of e.g. cellulose, the enzymatic degrada-
tion of lignin takes place with non-specific oxidative enzymes. Basidio-
mycetous fungi (primarily white rot fungi such as Phanerochaete
chrysosporium) appear to have an important role for natural lignin deg-
radation (recently reviewed by (Camarero et al., 2014)), but also bacte-
ria such as Streptomyces viridosporus can degrade lignin by secreted
enzymes (Dutta, 2015). White-rot fungi produce and secrete several
kinds of oxidoreductases including laccases and heme peroxidases.
These enzymes act indirectly in a cascademanner, which eventually re-
sults in an oxidative breakage of bonds in lignin. Laccases have a low
redox potential, which only allows oxidation of the phenolic lignin
units via the reduction of oxygen to water (Bugg et al., 2011; Sánchez,
2009). The substrate activity of laccases can be extended to non-
phenolic lignin units if a mediator is available. The presence of mediator
elements such as acetosyringone, syringaldehyde, vanillin, p-coumaric
acid, 2,2′-azino-di(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), not
only increases the oxidation capability and substrate specificity of
laccases, but also prevents the polymerization of phenolic groups.
These small redox molecules function as ‘electron shuttles’ across the
enzyme and the lignin (Grelier and Koumbe, 2016; Huber et al., 2016;
Jeon et al., 2012). Lignin peroxidases have a higher redox potential and
attack non-phenolic lignin units by producing intermediate radicals,
whereas manganese peroxidases generate Mn3+, which acts on both
phenolic and non-phenolic lignin units via lipid peroxidation reactions.
Versatile peroxidases have in a sense combined the catalytic properties of
both lignin peroxidase andmanganese peroxidase. These enzymes have
been found in relatively few organisms, e.g. fungal Pleurotus and
Bjerkandera spp. (Ruiz-Dueñas et al., 2009). A different type of lignolytic
peroxidase known as dye-decolorizing peroxidase (DyP) has been report-
ed in the last decade for several organisms including Thanatephorus
cucumeris Dec. 1 (fungus) (Sugano et al., 2007); Rhodococcus jostii
(Ahmad et al., 2011) and Irpex lacteus (white rot fungi) (Salvachúa
et al., 2013). These enzymes, named after their ability to degrade an-
thraquinone derived dyes, are structurally different from other peroxi-
dases. Fungi also produce various additional accessory enzymes, which
help the enzymatic degradation of lignin. Important examples are
aryl-alcohol oxidases and glyoxal oxidases, which generate hydrogen
peroxide needed for the function of peroxidases. Other examples of in-
volved enzymes are aryl-alcohol dehydrogenases, copper radical oxi-
dases, multicopper oxidases, cellobiose dehydrogenases, glucose-
methanol-choline oxidoreductases and quinone reductases
(Ayyachamy et al., 2013).

In addition to the enzymatic degradation of lignin, some fungi pro-
duce a hydroxyl radical via Fenton oxidation chemistry (Bugg et al.,
2011). The reactive hydroxyl radical will oxidize compounds nearby, in-
cluding lignin (Fig. 4). Through this chemical oxidation, the lignin struc-
ture will be more accessible for the lignin degrading enzymes.

2.8. Depolymerization for biological conversion

A compilation of depolymerization products reported by the
methods above is given in Table 4. A range of different depolymerization
products are formed – both due to differences in the original lignin
source and depolymerization method employed. Depolymerization of
lignin is challenging due to the distribution of strength of bonds in the
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different C\\C and C\\O linkages in lignin, but it is crucial to enable an
efficient biological upgrading of lignin. Only smaller fragments pro-
duced can subsequently be taken up by microbes and channeled into
the intracellular catabolic routes. The two aspects of depolymerization
reported here, chemical or enzymatic, pose different challenges. In the
chemical depolymerization, controlling the char formation and
preventing repolymerization of the produced monomers is crucial in
order to obtain low molecular weight compounds. However, it is also
important to avoid formation of compounds inhibiting microbial
growth. The advantage of the chemical depolymerization is the high re-
action rate, while the low reaction rate is a drawback with enzymatic
depolymerization. Advantages of enzymatic depolymerization, e.g.
high selectivity towards fragments which are more easily channeled
into the microbial catabolic routes, may outweigh the lower reaction
rate. The selection of depolymerization method needs to be based on
the entire conversion process, i.e. not only the depolymerization itself
but also the later biological conversion must be taken into account to
avoid system sub optimization.

The small fragments from depolymerization may also be interesting
compounds themselves – possibly after minor modifications. The fur-
ther biocatalytic conversion of smaller lignin fractions, as well as
monolignols, will be described in Section 3.

3. Biocatalysis

Following the depolymerization of natural and technical lignins
aiming to yield low molecular weight lignins (monomers, oligomers),

the valorization process outlined in Fig. 2 continues with biocatalytical
steps towards different specialized end-products (fine or bulk
chemicals). Section 3.1 will address direct biocatalytic conversion of
monomers in few steps, whereas Section 3.2 will outline strategies for
microbial assimilation of said compounds into the central carbon me-
tabolism (from where auxiliary pathways towards desired end-
products can be attached by metabolic engineering). Finally,
Section 3.3 will discuss approaches in which the depolymerization and
bioconversion reactions are simultaneously combined (one-pot reac-
tions and consolidated bioprocessing).

3.1. Direct biocatalytic conversion of specific monolignols

Successful depolymerization of lignin will yield a range of substitut-
ed phenols and propyl phenols, as well as oligomers of these (cf.
Table 4). Direct conversion of these compounds into desired end prod-
ucts – in one or few step process – is one approach for valorization.
The market potential is somewhat difficult to assess, since many of
the compounds are currently not available at a reasonable scale.
However, there are many possible products which can in principle
be derived from a depolymerized lignin mixture by reduction, oxida-
tion or by shortening of the propylene-chain (see e.g. Bozell et al.,
2007). Most fundamental work on biocatalytic conversion has fo-
cused on monolignols rather than compounds which are more likely
to be obtained through lignin depolymerization. The biocatalytic
conversion – as an alternative to the chemical conversion - to obtain
the commercial product vanillin has been of considerable interest
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(reviewed by e.g. (Priefert et al., 2001)). A potential starting point is
ferulic acid, and a possible conversion is a two-step enzymatic con-
version starting with a decarboxylation giving 4-vinylguaiacol,
which is subsequently oxidized to vanillin. This can be achieved by
whole cell catalysis with a suitable host (e.g. Escherichia coli) overex-
pressing the two enzymes (Furuya et al., 2015). Vanillin can in turn
be reduced to vanillyl alcohol or oxidized to vanillic acid.

Rosazza et al. reviewed possible bioconversion routes of ferulic acid,
including - apart from vanillin - also products such as caffeic acid, 4-
vinylguaiacol, guaiacol, dihydroferulic acid, and polymers derived
from ferulic acid (Rosazza et al., 1995). An initial demethylation of
ferulic acid, a rather common microbial reaction, yields caffeic acid,
which is a starting point for new product family. In the absence of oxy-
gen, caffeic acid may be further converted through dehydroxylation to
cinnamic acid, and then reduced to phenyl propionic acid. This can in
turn subsequently be converted to phenyl acetic acid. Aerobically, how-
ever, caffeic acid is typically oxidized to protocatechuic acid (Grbić-
Galić, 1985).

The biocatalytic conversions of ferulic acid illustrate potential
products. Since ferulic acid is one of the principal cinnamic acid de-
rivatives, i.e. one of the lignin building blocks, one may believe that
it can be easily obtained through depolymerization of lignin. Howev-
er, ferulic acid is not a main product from depolymerization (cf.
Table 4). Furthermore, purified ferulic acid may in fact be more valu-
able per se than e.g. vanillin, and the economics of such a process
hinges on the availability of a low cost source of ferulic acid, even if
there would be a premium price paid for “natural” vanillin as com-
pared to chemically produced.

One main challenge when aiming for direct use of specific mono-
mers from depolymerized lignin is no doubt separation. The
depolymerized lignin will be a complex mixture – affected by both
its biological origin and the fractionation and depolymerization
methods applied. A different approach is therefore to work with
the entire mixture as a carbon source in a complete biological con-
version. In this process several of the compounds are to be metabol-
ically converted and shunted to desired end-products as described
by Linger et al. (Linger et al., 2014). This would – in a sense – be
similar to the “sugar-platform” biorefinery concept, in which
depolymerized carbohydrates are fermented into a wide range of de-
sired end-products (e.g. alcohols, carboxylic acids, polyols) using ge-
netically engineered microbes such as yeast (Nielsen et al., 2013). A
wide range of products can be conceived also in a biological “lig-
nin-platform” refinery, and several host organisms are possible. We
will here focus on a common feature of these, which is the initial cat-
abolic conversion of the lignin monomers. This will be central – re-
gardless of end-product.

3.2. Biological conversion of depolymerized lignin

Wherever biodegradation of wood occurs in nature, there seems to
be a symbiotic relationship between rot-type fungi and microbial spe-
cies, where the former typically degrade macromolecules by secreted
enzymes (as described in Section 2.7) giving smaller molecules which
can be further catabolized by the secretors themselves or by the pleth-
ora of microbes present in the surroundings, or even endosymbiontic,
e.g. by termite gut microflora (Brune, 2014; Cragg et al., 2015; de Boer
et al., 2005). From an evolutionary perspective, the toxic nature of
many of these aromatic compounds (Schweigert et al., 2001; Zaldivar
et al., 1999) constitutes a beneficial niche that may prove a competitive
advantage of aromatic-degrading microbes over less tolerant ones, also
to non-lignolytic species that have evolved both robustness to the (gen-
erally) toxic aromatic compounds andmeans of their catabolism (Davis
and Sello, 2010; de Boer et al., 2005; dos Santos et al., 2004; Strachan
et al., 2014).

There is a great diversity in the catabolism of biological degraders of
lignin and lignin-derivatives. However, evidence across the prokaryotic

kingdom (with few additional eukaryotic examples) indicates that a
common catabolic node for aromatic breakdown is the formation of cat-
echol or protocatechuate; this node is typically followed by aromatic
ring fission and enzymatic conversion to acetyl-CoA and/or other con-
stituents of the tricarboxylic acid (TCA) cycle (Bugg et al., 2011; Fuchs
et al., 2011; Johnson and Beckham, 2015). As such, the major end-
point of microbial aromatic catabolism - the central carbon metabolism
- allows for many novel biotechnological prospects of propagating mi-
croorganisms solely on lignin-derived substrates for sustainable
biovalorization of lignin waste streams.

Since most of the knowledge within the biological conversion field
comes from fundamental microbiology, the examples given in this sub-
section (3.2) will focus on the known biochemistry of the lignin degra-
dation that occurs in nature. This knowledge will be essential for future
synthetic biology applications, e.g. for engineering of designer organ-
isms for utilization of the specific mono- and oligomers resulting from
depolymerized technical lignins. It is however very difficult to theoreti-
cally predict the exact chemical outcome of the different depolymeriza-
tion methods (described in Section 2), and for this reason, good
chemical analysis pipelines (Section 4) will be essential also for design-
ing metabolic engineering strategies of the pathways described in the
subsections below.

3.2.1. Catabolic funneling pathways
The enzymes responsible for the dissimilation of lignin-related com-

pounds usually show less strict substrate specificity and are more tight-
ly regulated than those catalyzing central metabolic pathways (Díaz
et al., 2013). The expression of these enzymes are predominantly sub-
jected to carbon catabolite repression, cross-regulation and vertical re-
pression at different levels and by diverse mechanisms (Bleichrodt
et al., 2010; Díaz et al., 2013; Vinuselvi et al., 2012), the complexity of
which is not fully understood yet. This complex regulatory network
has important repercussions in the biotechnological utilization of mi-
croorganisms to degrade lignin products in lignocellulose biorefineries.
As previously pointed out in Section 2, products from lignin depolymer-
ization are very heterogeneous. This is true also for phenylpropenoid
precursors involved in lignin biosynthesis (see Section 1.1), which are
found naturally in soils and other environments after secretion by
plants. Catabolism of these aromatic molecules involves more than ten
different enzymatic activities (Table 5). The function of some of these
can shortly be summarized as follows.

Acyl-CoA synthetases: This type of enzymes is responsible of the ini-
tial activation of hydroxycinammic acids such as ferulic, p-coumaric,
sinapic, caffeic or hydrocaffeic acids to acyl-CoA thioesters. Substrate
specificity is typically low, and ATP is needed for this process (Pérez-
Pantoja et al., 2010).

Acyl-CoA hydratases/lyases: After the initial activation, the
propenoid aliphatic chain of the acyl-CoA product is hydrated to an al-
dehyde intermediate, and sequentially cleaved by this type of bifunc-
tional enzyme, yielding acetyl-CoA and the corresponding aldehyde
(vanillin, p-hydroxybenzaldehyde, syringaldehyde, etc.) (Masai et al.,
2007; Pérez-Pantoja et al., 2010).

Dehydrogenases: These enzymes have an important role in funnel-
ing pathways, converting the different aldehydes generated into the
corresponding carboxylic acid, which are less reactive and frequently
less toxic to the host cell (Jimenez et al., 2002; Overhage et al., 1999;
Pérez-Pantoja et al., 2010).

Decarboxylases: Non-oxidative decarboxylation of monoaromatic
acids is carried out by microbial decarboxylase complexes. This process
requires neither oxygen nor cofactors, and it is responsible for the con-
version of 5-carboxyvanillic acid to vanillate and vanillate to guaiacol,
the latter being a potential way to divert the protocatechuate branch
of β-ketoadipate pathway (see Section 3.2.3) towards the catechol
branch (Chow et al., 1999; Yoshida et al., 2010).

O-Demethylases: This category comprises several types of enzymes
that constitute demethylase systems, which are able to remove methyl
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moieties from methoxy-substituted aromatic molecules like vanillate,
syringate or guaiacol by different mechanisms, with the help of cofac-
tors (Kaufmann et al., 1998; Masai et al., 2007; Sudtachat et al., 2009).
There are two main types of O-demethylase systems. The first type is
preferred by aerobic microorganisms, and consists of two proteins: an
IA type oxygenase and a reductase, both iron-sulfur enzymes containing
[2Fe-2S] redox clusters (Masai et al., 2007). This system consumes oxy-
gen and reducing power in the formof NADH, and as a result of demeth-
ylation generates formaldehyde, water and NAD+, besides the
demethylated substrate, mainly protocatechuate (Overhage et al.,
1999). The second type of demethylase system involves several enzy-
matic components and is always dependent on tetrahydrofolate
(THF). One of the components is directly responsible for the removal
of the methyl group from the main substrate, but the primary methyl
acceptor for this group can be THF or a corrinoid protein, which will
need to be regenerated by another methyl transferase that will transfer
the methyl group to THF. Subsequently, THF also has to be regenerated
by other enzymatic elements, yielding THF and formic acid, in order to
recover this cofactor for further conversion of methoxylated substrates
(Kaufmann et al., 1998; Masai et al., 2007).

This ensemble of funneling pathways converges in few metabolic
nodes (Fig. 5), which lead further to intra- or extradiol ring opening
by different types of specific dioxygenases, and will be further metabo-
lized by the β-ketoadipate pathway, as will be discussed in the follow-
ing section. The most central node in lignin product metabolism is
protocatechuic acid, followed by catechol, but there are also other aro-
matic molecules that can be subjected to ring cleavage, such as 3-O-

methylgallate and gallic acid, as demonstrated in Sphingobium sp.
SYK-6 (Kasai et al., 2004; Masai et al., 2007; Masai et al., 1999a). Fur-
thermore, in this bacterial strain as well as strains from the order
Burkholderiales, an alternative extradiol ring cleavage pathway has
been described, which cleaves the aromatic ring between positions 4
and 5 of the phenolic ring (Kamimura and Masai, 2014; Masai et al.,
1999b).

3.2.2. Microbial pathways for oxidative cleavage of aromatic rings
Cleavage of aromatic rings requires breaking strong bonds, and in

nature this is not surprisingly predominantly an aerobic process. A
few anaerobic pathways for dissimilation of aromatics have been iden-
tified (e.g. Benzoyl-CoA (Fuchs et al., 2011)), but these could rather be
viewed as exceptions to the general rule. Oxidative ring cleavage of phe-
nolic compounds, such as the ones found in lowmolecularweight lignin
fractions, have classically been divided into three different categories
depending on the relative positions of hydroxyl groups on the ring
and the resulting fission (Harwood and Parales, 1996; Vaillancourt
et al., 2006). Ortho-cleavage occurs in-between two adjacent OH-
groups (intradiol) whereas meta-cleavage denotes fission adjacent to
one of the OH-groups (extradiol) (Fuchs et al., 2011; Vaillancourt
et al., 2006). Lastly, gentisate-cleavage can occur when two OH-groups
are positioned in para position (Harpel and Lipscomb, 1990); however,
due to the chemical structure, this type of ring dissimilation is not appli-
cable for the catechol and protocatechuate node. It should also be noted
that novel microbial strategies for aromatic catabolism that diverge
from these classic pathways have recently been identified in nature
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(Ismail and Gescher, 2012), which implies that this field is far from
being fully elucidated.

Based on their genetic makeup, microbes typically harbor
dioxygenases specific for either ortho or meta cleavage, thus making
the mode of phenol dissimilation species or even strain dependent
(Stanier and Ornston, 1973). However, there are known exceptions of
microorganisms that harbors both cleavage pathways or other
substrate-specific redundancies (Pérez-Pantoja et al., 2010); in such
cases the pathway co-regulation is governed by differential gene induc-
tion patterns, often through carbon catabolism repression; although
still an emerging field, this phenomena has e.g. observed in
Acinetobacter baylyi, Pseudomonas putida and Streptomyces spp.
(Bleichrodt et al., 2010; Brzostowicz et al., 2003; Davis and Sello,
2010; Eaton and Ribbons, 1982; Morales et al., 2004). In addition to
this, vertical regulation of the upper funneling pathways by presence
of protocatechuate has also been observed in A. baylyi (Bleichrodt
et al., 2010).

Following the individual routes of ring cleavage and catabolism, the
microbial ortho and meta pathways converge on the tricarboxylic acid
cycle (TCA) via their end-product formation (Bugg et al., 2011; Wells
and Ragauskas, 2012). Aromatic ortho-cleavage from the catechol/
protocatechuate node - commonly referred to as the β-ketoadipate
(β-KA) pathway in reference to its keymetabolite - is cofactor indepen-
dent and yields acetyl-CoA and succinate, whereas the meta-cleavage
pathway starting this node is NAD+-dependent with an end-point for-
mation of pyruvate and acetyl-CoA (Inoue et al., 1995; Johnson and
Beckham, 2015). Catechol is dissimilated with ortho or meta fission
and with said outcome; however, due to the non-symmetric structure
of protocatechuate (cf. Fig. 2), it can undergometa-fission in two possi-
ble ways: either by NAD+-dependent meta cleavage as previously de-
scribed (here occurring in the 2,3 position), or by NADP+-dependent
4,5-meta cleavage producing two molecules of pyruvate (Kamimura
and Masai, 2014; Vaillancourt et al., 2006).

It is evident that the heterogeneous nature of lignin and the
diversity in substrate specificity throughout the taxa of known lignin-
degrading organisms limit the catabolic compatibility of these
microbes with the type of lignin source, meaning that not all lignin-
degrading organisms can utilize all types of lignin sources and
their derivatives (Brown and Chang, 2014; Fernandez-Fueyo et al.,
2012; Kasai et al., 2005). Catabolism of syringyl (S) lignin is for
instance entirely dependent on the meta-cleavage pathway in the
sense that the S-lignin degradation metabolites do not pass through
the catechol/protocatechuate node but rather converge on the lower
branch of themeta-pathway (Kasai et al., 2005). Derivatives of guaiacyl
(G) lignin can on the contrary theoretically be catabolized by either
ortho- or meta-cleavage since the upper funneling pathways for such
compounds converge on the catechol/protocatechuate node (Bugg
et al., 2011).

The prevalence of ortho-cleavage pathways seems to be higher than
meta-cleavage throughout the panel of currently known lignin-
degrading prokaryotes (Bugg et al., 2011) (Table 6). Homologous en-
zymes for ortho fission of protocatechuate were predominantly found
in actinobacteria and in a select set of proteobacteria, whilst meta-
pathways were less prevalent and almost exclusive to proteobacteria
(Bugg et al., 2011). Taken together with the fact that a high number of
the cultivatable lignin-degrading species belong to the actinobacteria
phylum (Bugg et al., 2011; Tian et al., 2014; Větrovský et al., 2014),
the ortho, or β-KA, pathway protrude as the more relevant of the two
possible cleavage routes and will thus be highlighted in following sec-
tion of this review.

3.2.3. Prevalence and prospects of the ortho-cleaving β-ketoadipate (β-KA)
pathway

In nature, the β-KA pathway (also known as the 3-oxoadipate path-
way) is a highly conserved metabolic route for ortho-cleaving ring fis-
sion that is yet very diverse when it comes to regulation and gene

organization (Harwood and Parales, 1996). Although the form and re-
dundancy of isoenzymes may differ both in and between species
(Pérez-Pantoja et al., 2010), the pathway reactome is apparently consis-
tent throughout the known hosts (Harwood and Parales, 1996; Wells
and Ragauskas, 2012). Using P. putida as a model organism, the constit-
uents and biochemistry of the different branches of the ß-ketoadipate
pathway was elucidated in the mid-1960s by Ornston and Stainer
(Ornston and Stanier, 1966). Since then, this pathway has been discov-
ered and described in numerous prokaryotes: predominantly in soil,
forest and termite gut isolates (see Table 6) (Bugg et al., 2011; Tian
et al., 2014). A few occurrences of the β-KA pathway have also been dis-
covered in eukaryotes, including rot-type fungi such as Trametes
versicolor (Alexieva et al., 2010), filamentous fungi (Martins et al.,
2015; Michielse et al., 2012), as well as unicellular yeasts from the
Rhodotorula (Cook and Cain, 1974; Jarboui et al., 2012;
Katayama-Hirayama et al., 1992; Shimaya and Fujii, 2000) and Candida
genera (Holesova et al., 2011; Krug et al., 1985; Wang et al., 2011). In a
majority of the known aromatic degrading microbes, the upper funnel-
ing pathways are linked to the β-KA pathway by the protocatechuate/
catechol catabolic node (Harwood and Parales, 1996; Pérez-Pantoja
et al., 2010). The β-KA pathway (extensively reviewed in (Harwood
and Parales, 1996)) itself consists of nine enzymes allocated in two par-
allel upper branches (one from protocatechuate and one from catechol)
that converge on a third branch. The latter has a starting point in the for-
mation of the eponymous β-ketoadipate and an endpoint on acetyl-CoA
formation (Fig. 6) and thus the β-KA pathway bridges the larger aro-
matic compounds (catabolized by the upper funneling pathways)
with the TCA cycle.

According to present knowledge, not all microorganisms host both
branches of theβ-KA pathway; rather, many species seemhave evolved
to favor catabolism of either protocatechuate or catechol by regulation
or absence of pathway genes (Harwood and Parales, 1996; Jimenez
et al., 2002). For the eukaryotic β-KA pathway, there seems to be a pref-
erence towards the protocatechuate branch (Harwood and Parales,
1996), although species with the catechol or both branches have been
discovered (Anderson and Dagley, 1980; Durham et al., 1984; Krug
and Straube, 1986; Martins et al., 2015; Michielse et al., 2012; Santos
and Linardi, 2004). Furthermore, the metabolic route of the eukaryotic
version of this branch differs from that usually found in prokaryotes:
here the lower part of the branch is bypassed as β-carboxy-cis,cis-
muconate is converted to β-ketoadipate via β-carboxymuconolactone
(Fig. 6) (Harwood and Parales, 1996).

Although amajority of themetabolic engineering approaches for im-
proved lignin catabolism have focused on heterologous expression of
extracellular lignolytic enzymes (laccases and peroxidases) in novel
hosts (Bleve et al., 2008; Cassland and Jönsson, 1999; Gonzalez-Perez
and Alcalde, 2014; Ryu et al., 2008;Wang andWen, 2009), recent stud-
ies have focused on the catechol/protocatechuate node and its possibil-
ities as a stepping stone for biological production of novel compounds
from aromatic substrates. The biotechnological prospects of the β-KA
pathwayswere recently comprehensively reviewedwith a focus on bio-
remediation of pollutants and valorization of lignocellulosic waste
streams (Wells and Ragauskas, 2012). The protocatechuate branch of
R. jostii RHA1 has recently been reconstructed in vitro (Yamanashi
et al., 2015), which opens up for new knowledge on the characteristics
of species- and/or strain-specific isoenzymes of the β-KA pathway.
Other approaches have focused not on the acetyl-CoA end-point of
this pathway, but rather on rerouting the carbon to other end com-
pounds, e.g. adipic acid (Jung et al., 2015; Vardon et al., 2015). Further-
more, a recent study on P. putida demonstrated that the aromatic
ring fission pathways are in fact interchangeable and are therefore
promising targets for metabolic engineering. In fact, the authors
conclude that the exogenous meta cleavage pathway from another
strain of P. putida proved to be better than endogenous ortho in
terms of pyruvate yield from lignin-derived substrates (Johnson and
Beckham, 2015).
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3.2.4. Microbial end-products from catabolized lignin
Through the natural variety in microbial metabolic products and the

possibilities of metabolic engineering, there exist many routes to derive
catabolized low molecular weight lignin to value-added end-products.
Aromatic and phenolic bi-products (e.g. vanillin) (Masai et al., 2007)
and central metabolites (e.g. pyruvate and lactate (Johnson and
Beckham, 2015)) are obvious derivatives of the intracellular aromatic
fluxes. Other enrichment options typically include rerouting of the
flux from acetyl-CoA by endo- or exogenous pathways. Examples of
studies on the latter include bioplastics from acetyl-CoA (Linger et al.,
2014), biodiesel from lipids generated by oleaginous Rhodococci from
lignin model compounds (Kosa and Ragauskas, 2012) and polymers
(Crawford et al., 1983; Michinobu et al., 2008; Otsuka et al., 2006;
Trigo and Ball, 1994). Another feasible alternative is to engineer the ca-
tabolism upstream of the TCA cycle; this has for instance been demon-
strated by a re-routing of the catechol branch of the β-KA pathway to
form adipic acid instead of acetyl-CoA (Vardon et al., 2015). Strategies
such as these are ultimately a crucial instrument in valorizing
depolymerized lignin to products of biotechnical importance.

3.3. One-pot reactions and consolidated bioprocessing

Another possible biotechnical approach to valorization of lignin is to
attempt to mimic the symbiotic system between fungi and microbes
that occurs in nature, i.e. to combine the depolymerization and catabolic
conversion of resulting smaller fragments into one step. This can poten-
tially be implemented as a one-pot biocatalysis process, where multiple
reaction steps are simultaneously performed in one reactor (e.g. by en-
zymatic or by engineered whole-cell catalysis) (Gasser et al., 2012), or
through the means of consolidated bioprocessing (CBP), a process
where degradation and metabolism are simultaneously performed by
a microbial consortia in a single bioreactor, without the addition of ex-
ternal enzymes (Olson et al., 2012).While CBPwas originally developed
for ethanol production from lignocellulose (Olson et al., 2012), steps
have recently been taken towards lignin CBP (Salvachúa et al., 2015).

The idea behind one-pot biocatalysis is to combine multiple enzy-
matic steps in one go in order to reduce the total unit operations. An ex-
ample regarding lignin degradation was performed by Picart et al. that
studied glutathione-dependent β-etherases and glutathione lyases
(from Sphingobium sp. SYK-6, Novosphingobium sp. PP1Y and
Thiobacillus denitrificans ATCC 25259) as lignin depolymerization
biocatalysts (Picart et al., 2015). The authors set up proof of concept
one-pot processes combining the different β-etherases and glutathione
lyases and found that the reaction exhibited a good potential for selec-
tive cleaving of the ether bonds in the lignin macromolecule and for
subsequent release of glutathione-free aromatic compounds (Picart
et al., 2015).

Central to the consolidated bioprocessing approach is the design of
the composition of themicrobial consortia, i.e. to develop a working ar-
tificial niche; often aided by microbial metabolic engineering (Amore
and Faraco, 2012; Olson et al., 2012). So far, lignin CBP studies have
mostly focused on prokaryal co-cultures, and although fungal CBP is a
relevant option, a drawback observed at least for lignocellulose CBP
has been the low degradation rate and productivity (Panagiotou et al.,
2005). For lignin CBP, Salvachúa and colleagues examined 14 bacterial
species in order to identify the best biological catalysts for lignin depo-
lymerization, secretion of lignolytic enzymes, consumption of aromatic
compounds, and value-added chemicals production, using a lignin-
enriched biorefinery stream as feedstock (Salvachúa et al., 2015). It
was found that Acinetobacter sp. ADP1, Amycolatopsis sp. 75iv2,
P. putida KT2440 andmt-2, and R. jostii RHA1were able to depolymerize
highmolecularweight lignin complexes and catabolize appreciable por-
tions of the low molecular weight aromatics. In a study by Wu and He,
two sediment-free methanogenic microbial consortia were screened
for lignin depolymerization under anaerobic conditions (Wu and He,
2013). This setup successfully resulted in biomethane production

coupled lignin depolymerization, and also boosted the hydrolytic effi-
ciency of the tested lignocellulosic materials (Wu and He, 2013).
Other notable studies on fungal and prokaryal lignin degrading consor-
tia include (Kausar et al., 2010; Rüttimann et al., 1991; van der Lelie
et al., 2012; Wang et al., 2013).

4. Chemical analysis

A prerequisite for any valorization strategy is the ability to identify
and quantify lignin and fraction products from lignin. This is in particu-
lar essential in order to be able to engineer tailor-mademicroorganisms
(Section 3) that can utilize the specific low molecular weight lignins
resulting from depolymerization of technical and natural lignins
(Section 2), and as well to be able to assist in validation and trouble-
shooting of the metabolic engineering of said microorganisms.

This section deals with the chemical analysis of solid and liquid sam-
ples containing processed lignin, i.e. monolignols and oligolignols of dif-
ferent molecular weight distribution. Structural elucidation of intact
lignin or total lignin analysis is, however, not covered here. A compre-
hensive review was recently written by Lupoi et al., in which advances
achieved in qualitative and quantitative analysis of lignin over the last
ten years was evaluated based on their specific application fields
(Lupoi et al., 2015). There are also a few additional reviews describing
chemical analysis of lignin-derived samples, see e.g. (Brudin and
Schoenmakers, 2010; Vaz, 2014). Table 7 summarizes the different an-
alytical techniques used for lignin analysis.

Samples obtained from depolymerization reactions of lignin have
different challenging characteristics. To start with, the samples are a
mixture of many dissolved phenolic compounds, precipitated
oligolignols and particles/agglomerates derived from the lignin. Fur-
thermore, the pH might be extremely high or low, of which the former
is a larger challenge than the latter in terms of compatibility of analytical
equipment usually made of stainless steel and silica-based chromato-
graphic columns. Moreover, the risk of re-polymerization reactions oc-
curring after depolymerization prompts for rapid analysis in order to
avoid transformation of the sample components.

4.1. Sample preparation

The first step of the analysis is to perform extraction and/or sample
clean-up prior to separation and detection. Usually, conventional sol-
vent extraction is used with solvents like diethyl ether (Llano et al.,
2015; Mokochinski et al., 2015), ethyl acetate (Vigneault et al., 2007),
n-hexane followed by ethyl acetate (Ribechini et al., 2015) or with eth-
anol and ethanol/water mixtures (Wang and Chen, 2013). A more aca-
demic study explored the use of ionic liquids such as [Bmim][MeSO4]
(Prado et al., 2013b), although such method is likely to be expensive
as well as suffer from difficult separation of the lignin monomers from
the ionic liquid. More rare is the use of pressurized hot (subcritical)
water as extraction solvent (Sumerskiy et al., 2015). In the same
study, XAD-7 resin was used for sample clean-up in order to remove
carbohydrates from the hot water extract (Sumerskiy et al., 2015). In
some of the studies, fractionations have been done using a series of dif-
ferent solvents, such as ethanol containing different volume percentage
of water (Wang and Chen, 2013).

4.2. Chromatography

Chromatography has beenwidely used in the analysis of lignin sam-
ples for various purposes. Major types of chromatographic techniques
that are applied in lignin analysis are gas chromatography (GC), liquid
chromatography (LC), size exclusion chromatography (SEC), capillary
electrophoresis (CE) and two-dimensional (2D) chromatography. The
combination of these techniques with advanced detectors and sample
preparation procedures provides analytical tools with high separation
capacity and resolution power. Remarkable progress has been made
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regarding the development of new chromatographic instrumentations
and methods and the improvement of established methods in recent
years (Lupoi et al., 2015). This section will focus on the introduction
and assessment of latest research performed in each of the subcate-
gories of chromatography.

4.2.1. Gas chromatography (GC)
Gas chromatography, combined with a series of sample pre-

treatment and detection techniques, have long been prevalently used
in the analysis of lignin and lignin–carbohydrate complexes structures
and linkages (del Río et al., 2012a; del Río et al., 2012b; Du et al.,
2013; Du et al., 2014; Lupoi et al., 2015), the evaluation of lignin mono-
meric units (del Río et al., 2005; Kaiser and Benner, 2012; Lima et al.,
2008; Nunes et al., 2010) and the determination of lignin depolymeriza-
tion products (Galkin and Samec, 2014; Gosselink et al., 2012; Stärk
et al., 2010; Xu et al., 2012b).

Standardwet chemistry procedures for lignin content determination
requires vast time and labor input. A few studies have probed the possi-
bility to utilize pyrolysis-gas chromatography (py-GC) as a substitute
technique for lignin content determination of various hard- and soft-
woods (Alves et al., 2009; Alves et al., 2008; Alves et al., 2006;
Lourenço et al., 2013). py-GC with a flame ionization detector (py-GC-
FID) was proven to give comparable precision to that of the standard
Klason analysis with advantages that no sulfuric acid pretreatment is
needed and additional information on lignin structure can be obtained
(Alves et al., 2006). Themodel was further evaluated with larch species
and compression wood and principal component analysis (PCA) was
applied to study species- and tissue-specific differences for classification
of softwoods lignin (Alves et al., 2009; Alves et al., 2008).

Two research groups have investigated the analysis of lignin func-
tional groups with headspace-gas chromatography (HS-GC). With this
technique, accurate determination of methoxy groups in lignin was
achieved as a substitute for the complicated and time-consuming tradi-
tional method (volumetric titration based on iodometry). The large un-
certainty caused by sampling methyl iodide, which is highly volatile in
the conventional GC method, was thus avoided (Li et al., 2012). Fast
and efficient determination of lignin sample carbonyl group content
was also enabled by using HS-GC. The authors found that carbonyl
group reduction reactions could be significantly accelerated by the addi-
tion of SiO2 powder (Li et al., 2015).

Phenolic monomers derived from lignin were analyzed by a head-
space solid phase microextraction coupled with gas chromatography–
mass spectrometry (HS-SPME/GC–MS). The method was optimized
and applied on wheat straw. The speed and solvent-free feature of this
technique is in accordance with the principles of green chemistry
(Kolb et al., 2013). In the study of solvolysis of lignin in hydrogen donat-
ing solvents, the unfavorable time gap between solvolysis at given con-
ditions and analysis was eliminated by using an onlinemicroreactor-gas
chromatography system (Kim et al., 2014).

4.2.2. Liquid chromatography (LC)
The successful coupling of high-performance liquid chromatography

and mass spectrometry (HPLC-MS) offers a powerful technique for the
analysis of low molecular weight compounds in lignin samples with
high selectivity and sensitivity. Mass spectrometry based analysis is
discussed in more detail below (Section 4.3).

Negative-ion-mode electrospray ionization with NaOH dopant was
proven to be able to ionize lignin degradation products very efficiently
(Haupert et al., 2012). High-performance liquid chromatography-
tandem mass spectrometry (HPLC-MSn) with this ionization technique
was then utilized to separate and identifymodel compounds in complex
degraded lignin product (Haupert et al., 2012; Owen et al., 2012). Lignin
type monomeric and dimeric molecules in an organosolv lignin sample
were thoroughly analyzed by HPLC-MSn, and this high-resolution ap-
proach elucidated the elemental compositions and structural informa-
tion of the major compounds (Jarrell et al., 2014). Technology

development in the packing material and instrumentation gave rise to
the ultra-high-performance liquid chromatography (UHPLC). This ad-
vanced variant of traditional HPLC provides higher separation power
in shorter analysis time. UHPLC coupled with an UV detector was ap-
plied in the analysis of mono-phenolic compounds from oxidative deg-
radation of lignin (Ouyang et al., 2014). With the help of a self-
constructed library of enzymatically synthesized monomers, dimers
and oligomers, a fast and reliable analysis method of soluble lignin ex-
tracted from sugar cane utilizing UHPLC coupled with tandem mass
spectrometry was successfully developed (Kiyota et al., 2012).

Besides the analysis of small lignin-derived compounds, HPLC has
also been used in the characterization of processed lignin samples. 10-
step gradients of N,N-dimethylformamide (DMF) in an aqueous mobile
phase (buffered by phosphate) and a wide-pore octadecylsilica column
was used to fractionate and characterize lignin samples of different ori-
gins, providing well-defined lignin peaks. Size exclusive effects were
suppressed by the usage of a wide-pore reverse phase sorbent and sur-
face interactions improved by good solvation power of DMF of lignin,
which led to good reproducibility and robustness of the method (Gora
et al., 2006).

Hydrophobic interaction chromatography (HIC) has also been used
for fractionating processed lignin according to hydrophobicity differ-
ences (Ekeberg et al., 2006).

4.2.3. Size exclusion chromatography (SEC)
Despite the wide use of size exclusion chromatography for lignin

molecular weight determination (Guerra et al., 2007; Ringena et al.,
2006; Savy and Piccolo, 2014), accurate and reproducible evaluation
of lignin MW distribution with this technique is still elusive due to lig-
nin's degradation during isolation, large variance in polydispersity and
solubility, associative behavior and detector limitations (Asikkala
et al., 2012; Baumberger et al., 2007). For increasing the capability of
SEC in lignin research, some efforts have been and still need to be put
into improving the reliability and reproducibility of SEC methods.

In sample preparation, a common method to minimize association
interaction is acetylation using acetic anhydride in pyridine as a deriva-
tization method, which suffers from a long reaction time (6 days). In
contrast, acetobromination by using acetyl bromide in glacial acetic
acid provided completely tetrahydrofuran-soluble lignin derivatives
within 30min (Asikkala et al., 2012). In a study towards standardization
of SECmethods, the highmolar-mass fraction of polydisperse lignins, in
combinationwith different chromatographic conditions and data calcu-
lating strategies, were found to lead to large measurement variations of
MW determination. The importance of recovery tests for unanalyzed
lignin was also highlighted. In addition, two recommendations of chro-
matographic configurations were made for both aqueous and organic
SEC (Baumberger et al., 2007). Multi-angle laser light scattering detec-
tor (MALLS) can be used for lignin molecular weight determination
and has the ability to detect lignin aggregates (Contreras et al., 2008).
Compared with traditional RI or UV detectors, MALLS coupled with
size exclusion chromatography can enrich the results withmore details,
with the capability to effectively monitor the changes in lignin MWdis-
tribution, gyration radius and hydrodynamic radius (Gidh et al., 2006a;
Gidh et al., 2006b). The interference of lignin fluorescence was con-
firmed and avoided by applying narrow band-pass filters.

4.2.4. Capillary electrophoresis (CE)
CE has in recent years proven to be a very useful technique for qual-

itative and quantitative determination of low molecular mass lignin
degradation products as well as lignin content evaluation (Bogolitsyna
et al., 2011; Dupont et al., 2007; Gebremeskel and Aldaeus, 2013; Lima
et al., 2007; Rovio et al., 2010). Compared with traditional GC and
HPLC methods for the determination of lignin-derived compounds, CE
offers shorter analysis time without the need for pre-derivatization.

Coupled with UV detector, eight aromatic lignin derivatives in old
book pages were separated and identified in 9 min (Dupont et al.,
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2007). 11 lignin-derived monomers from alkaline CuO oxidation of
humic acid were separated and quantified in 12 min, which was signif-
icantly faster than common HPLC and GC methods (Kaiser and Benner,
2012; Lobbes et al., 1999). The combination of CE with mass spectrom-
etry detection (CE-MS) enabled the acquisition of structural informa-
tion of the analytes. CE-MS was applied to the determination of lignin-
derived phenolic model compounds in cellulose processing effluents
and aged papers (Bogolitsyna et al., 2011).

Besides the usage in analysis of low molecular mass lignin deriva-
tives, the applicability of CE in the determination of lignin content was
tested on black liquor samples. The results were in good agreement
with those of the traditional sulfuric acid/UV method. Compared with
the traditional absorption spectroscopic method where exact lignin ab-
sorption coefficient is very difficult to determine, the authors argued
that the CEmethod holds the advantage that exact lignin absorption co-
efficient is not needed (Gebremeskel and Aldaeus, 2013).

4.2.5. Two-dimensional chromatography
The newly emerged multidimensional chromatography technique

has drawn more and more attention in the field of lignin sample analy-
sis. Compared with traditional one-dimensional chromatography, 2D
chromatography can provide higher separation power and peak capac-
ity, which allows the complex compositions of various lignin samples to
be better investigated. Several research groups have performed the
analysis of bio-oil samples and upgraded bio-oil samples with two-
dimensional GC (2D–GC) in recent years. Many co-eluting compounds
in conventional 1D–GC methods were clearly separated and identified
(Faccini et al., 2013; Marsman et al., 2008; Moraes et al., 2012;
Tessarolo et al., 2013; Windt et al., 2009). Quantitative studies of bio-
oil composition were achieved by combining 2D–GC-FID and 2D–GC-
time of flight-mass spectrometry (2D–GC-TOF/MS). The great separa-
tion capability and resolution power provided by 2D–GC–MS can eluci-
date detailed differences between complex samples, which is beneficial
for the study of pyrolysis mechanism and catalyst performance behind
the bio-oil samples (Djokic et al., 2012; Michailof et al., 2014). Sulfonat-
ed lignin dispersants in agrochemical formulations were fingerprinted
by 2D chromatography. The coupling of ion-pair reversed phase HPLC
(IP-RPLC) with ion-pair SEC (IP-SEC) enabled the differentiation of
“good quality” batches of sulfonated lignin from “bad quality” ones
(Brudin et al., 2008).With the doubt that size variations cannot fully ac-
count for the different behaviors of lignin in agrochemical formulations,
the author developed a novel online ion-pair liquid chromatography-
thermally assisted hydrolysis and methylation-gas chromatography–
mass spectrometry system (IP-RPLC × THM-GC–MS). This hyphenation
can determine not only the overall sulfonated lignin composition, but
also the correlation between chemical compositions and sizes of lignin
molecules (Brudin et al., 2010).

4.3. Mass spectrometry

Mass spectrometry (MS) is a commonly used analytical technique
for structural characterization of isolated lignin. Commonly applied
mass analyzer techniques are quadrupole, ion trap (ITMS) or Fourier
transform-ion cyclotron resonance (FT-ICR) mass spectrometers.
These techniques are described in more detail by Gross (Gross, 2011).
There is an excellent review by Reale et al. in whichMS applications re-
lated to structural characterization of isolated lignin are reported in de-
tail (Reale et al., 2004). Hence, in this review the focus is bent on MS
techniques used in lignin research in the last ten years since that review
was published.

4.3.1. Analysis of monomeric lignin-related compounds
Pyrolysis combined with gas chromatography mass spectrometry

(Py-GC–MS) is a widespread used technique for lignin degradation
studies and the analysis of themonomeric lignin subunits. Due to its ad-
vantages for lignin degradation studies, because of short measurement

times and the presence of GC–MSdatabases, Py-GC–MS is still the dom-
inating analytical technique for analysis of lignin-derived compounds.
In most studies the GC system is combined with a quadrupole mass
spectrometer (qMS) and the focus is on the analysis of the monomeric
lignin subunits. (Ibarra et al., 2007; Lourenço et al., 2015; Shen et al.,
2010). Del Río et al. investigated lignin from jute fibers with a combina-
tion of Py-GC-qMS, 2D-NMRand thioacidolysiswith a focus on structure
elucidation. Besides monomers, they detected also dimeric lignin-
derived molecules (del Río et al., 2009).

However, in a few lignin studies the GC systemwas coupled to a dif-
ferent mass spectrometer. For instance, Ohra-aho et al. used a Py-GC
system coupled to an ion trapmass spectrometer (ITMS) in a lignin deg-
radation study with different catalysts (Ohra-aho and Linnekoski,
2015). Flamini et al. used also a GC-ITMS system for the investigation
of lignin-extracts from different trees in northern Italy (Flamini et al.,
2007). Beside different kinds of lignins, Windt et al. investigated Kraft
lignin by offline Py and a subsequent analysis of the liquid and the gas
phase by GC–MS/flame ionization detector (FID). The liquid phase was
also analyzed with a combination of GCxGC-Time-of-Flight (TOF)-MS
(Windt et al., 2009).

4.3.2. Analysis of oligomeric lignin-related compounds
In recent years, modern multiple stage tandem (MSn) and high res-

olution mass spectrometry (HRMS) techniques like a linear quadrupole
ion trap-Fourier transform ion cyclotron resonance hybrid mass spec-
trometer (LQIT-FT-ICR-MS) or a triple quadrupole mass spectrometer
(TQD) were combined with liquid chromatography (LC) for structural
lignin characterization with focus on lignin derived compounds with
higher molecular weights (Jarrell et al., 2014; Kiyota et al., 2012;
Morreel et al., 2010a; Owen et al., 2012). Jarrell et al. investigated lignin
isolated from milled switch grass with an LQIT-FT-ICR-MS equipped
with an electrospray ionization (ESI) source run in negative mode. Be-
side monomeric lignin derived compounds they focused their research
also on dimeric lignin compounds, which they identified with the frag-
mentation pathways in MSn experiments and the elemental composi-
tions of the compounds obtained from exact mass measurements
(Jarrell et al., 2014). With an LC × LC-LTQ-FT-ICR-MSmethod with neg-
ative ESI Morrell et al. investigated the fragmentation pathways in MS2

experiments of synthesized lignin trimers, tetramers and pentamers
bases on coniferyl alcohol (G) and sinapyl alcohol (S) monomeric sub-
units. Their developed analytical methodwas applied for detecting olig-
omeric lignin compounds on wild-type poplar xylem. 134 oligomeric
lignin compoundswere detected (Morreel et al., 2010a). Kiyota et al. in-
vestigated also synthesized lignin model compounds using a LC-TDQ
method with negative ESI. The synthesized oligomeric lignin model
compounds from dimers to tetramers were based on p-coumaryl
alcohol (H), coniferyl alcohol (G) and sinapyl alcohol (S) monomeric
subunits. Their developed method was tested on soluble lignin extract-
ed from sugarcane. Four monomeric, eight dimeric and three trimeric
lignin compounds were identified (Kiyota et al., 2012). Bogolitsyna
et al. coupled capillary electrophoresis (CE) to an ITMS using ESI in
negative mode. They investigated a pulp bleaching effluent sample
and detected lignin-derived monomeric compounds (Bogolitsyna
et al., 2011).

Several groups have investigated isolated lignin samples or lignin
model compounds with direct infusion MS (Banoub et al., 2007;
Haupert et al., 2012; Morreel et al., 2010b). Haupert et al. compared
the ionization properties of monomeric and dimeric lignin model com-
pounds with atmospheric pressure chemical ionization (APCI) and ESI,
both in negative and positive ionization mode (Haupert et al., 2012).
Morreel et al. used an ITMS with APCI in negative mode and a FT-ICR-
MS with ESI in negative mode to investigate the fragmentation path-
ways of four different bonding structures of self-synthesized dimeric
lignin model compounds (Morreel et al., 2010b). Banoub et al. analyzed
wheat straw lignin with a quadrupole-time-of-flight tandem MS
(QTOF-MS/MS) with atmospheric pressure photoionization (APPI) in
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both negative and positive ionizationmode. They detected 63 new olig-
omeric compounds from dimers up to heptamers. The group proposed
molecular structures of the oligomers and possible fragmentation path-
ways in tandem MS experiments (Banoub et al., 2007).

4.3.3. Analysis of solid lignin samples
With different MS techniques like TOF-secondary ion mass spec-

trometry (TOF-SIMS) (Matsushita et al., 2012; Saito et al., 2005; Saito
et al., 2006), matrix-assisted laser desorption/ionization MS (MALDI-
MS) (Araújo et al., 2014; Richel et al., 2012), laser ablation resonance-
enhanced multiphoton ionization TOF-MS (LA-REMPI-TOF-MS)
(Mukarakate et al., 2011) or direct exposure MS (DE-MS) (Modugno
et al., 2008) also solid lignin samples have been investigated. The
usage of these MS techniques related to the investigation of lignin de-
rived compound were recently described in detail in the review of
Lupoi et al. (Lupoi et al., 2015).

5. Outlook

As a source of renewable carbon for chemicals, lignin is today the
largest untapped terrestrial source. Use of whole lignin – either as a
fuel or a polymer – has been the prevalent use until now. However, con-
sidering the richness of functional groups, other applications and alter-
natives for its conversion should be opted for. The challenges in using
lignin as a raw material for low molecular weight chemicals originate
from the fact that the polymer is heterogeneous - in many different
ways. Lignin is firstly heterogeneous in the sense that different plants
build their lignin with different proportions of the constitutive building
blocks. Secondly, the cross-linking patterns are largely stochastically
created, and the lignin is also connected to hemicellulose in the plant.
There is thus heterogeneity for lignin even from the same plant,
underlining the challenges in lignin valorization. Depolymerization re-
quires the breaking of several types of bonds, which – if successful –
will result in a complex mixture, which is highly influenced by the
method of depolymerization used. The obtained mixture is difficult to
chemically characterize and analytical methods need to be improved.
For example, selective extraction methods, targeting low molecular
weight aromatic compounds are needed, as well as suitable MS
methods for the study of the fragmentation pathways in MSn experi-
ments of lignin-related oligomeric compounds higher than tetramers.
The lack of commercial standards or a database for lignin-related oligo-
mers also complicates their analysis.

The use of individual compounds from a depolymerizedmixturewill
be challenging from a separation technology point of view. A potential
way forward is therefore to make use of the entire depolymerized mix-
ture in a process towards targeted end-products. The converging path-
ways for catabolism of aromatic compounds found in many organisms
in nature is a promising starting point, which could enable us to venture
into the metabolic engineering route – this time not from the familiar
starting point of polysaccharide derived sugars – but rather from
lignin-derived aromatic compounds. Discoveries of novel isolates and
enzymes acting on these compounds as well as a more detailed knowl-
edge on the pathways – especially the upper funneling pathways –will
be highly important. This exciting possibility will also require improved
methods for lignin depolymerization, based on a better knowledge of
lignin structure and depolymerization mechanism, as well as improved
tools for efficient engineering of the aromatic catabolic pathways, based
on an increased knowledge of these.
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